
Adaptive Waypoints for Graduated Embodiment
 of Autonomous Mobile Robots

Abstract

We describe the methods we are developing to
design behaviors for embodied agents in the form of
autonomous vehicles. Our work is based on a
strategy we call graduated embodiment, in which
high-level behavior algorithms that are initially
developed using evolutionary computing methods in
a relatively low-fidelity, disembodied modeling
environment can be migrated to useful applications.
We argue for biomimetic behavior engineering that
is a hybrid of human design and artificial evolution,
and evolutionary computing that is applied in stages
to preserve building blocks and limit search space.
We present our application of these methods to the
concept of adaptive waypoints, which allow
navigation behaviors to be re-used among vehicles
with different degrees of embodiment, levels of
fidelity, and modes of locomotion.

1. Introduction

The tasks of trying to figure out where you are, where you
are going, and how to get there are some of life’s oldest
dilemmas. Navigation, positioning, and path planning are
crucial to virtually every activity undertaken by animals and
humans, yet the process often seems impossible to describe,
model, or prescribe. In the simplest examples, the goals and
rules of motion allow for simple behavior algorithms that
can be turned into human-generated computer programs that
can control human-created systems. But such programs are
brittle and prone to failure if the system does not behave
exactly as anticipated.

The real world is full of contingencies, unexpected
events, multiple (and often competing) goals, nonlinear
responses, feedbacks, noise, and complex interactions across
a wide range of time scales and levels of organization.
Nevertheless, animals have evolved the ability to cope,
prosper, and multiply in such a world. Their robust
behaviors give them the ability to navigate and “plan” their

path of motion in order to migrate, search for food, return
home, find mates, and avoid predators. They are successful
at these goals while simultaneously tending to lower-level
tasks, adapting to changes in their environment, dealing
with unfamiliar situations, and ignoring irrelevant
information.

Human-designed autonomous mobile robots must possess
similarly complex and adaptive behaviors if they are to be
useful for the types of problems for which they are being
proposed. Many of their goals are analogous to those of
animals, and include migration, search, cooperation,
exploration, location, and avoidance. In some cases, the
adaptive behaviors of animals can be applied to the
development of autonomous robots; a method we call
“biomimetic behavior engineering” (Boslough, 2002).
Locomotion behaviors (such as dynamic soaring by
albatrosses) can be analyzed and written into a control
algorithm, but such purely “hand-coded” behaviors are
usually unable to deal with the unexpected.

The simple borrowing of behaviors observed in the
animal world and applying them to robotics is insufficient.
The external manifestation of a behavior can be simulated,
but the actual behavior includes the internal processing.
Real animal behaviors tend to be bottom-up and emergent,
not top-down and “hard-wired”. One can write a computer
program that will appear to code a behavior that, in reality,
emerges from a complex nonlinear dynamic balance of
different processes. Such programs can be useful for
applications where the environment is predictable, but they
amount to mimicry of external expression, not internal
process. The “external” method of biomimetic behavior
engineering is a form of “classical artificial intelligence
(AI)” and suffers from the same limitations.

Our goal is to develop a paradigm for behavior
engineering that generates robust, re-usable, and useful
control systems for autonomous mobile robots. Our
primary application of interest is to develop goal seeking
navigation behaviors.

Mark Boslough
Evolutionary Computing &

Agent Based Modeling Dept.
Sandia National Laboratories

Albuquerque, NM 87122
mbboslo@sandia.gov

Arthurine Breckenridge
Intelligent Systems

Principles Dept.
Sandia National Laboratories

Albuquerque, NM 87122
arbreck@sandia.gov

Michael Peters
Evolutionary Computing &

Agent Based Modeling Dept.
Sandia National Laboratories

Albuquerque, NM 87122
mpeters@sandia.gov

 1

2. Previous Research

As this work builds on the work of others the related
literature is presented with an overview of genetic
programming and autonomous mobile robots, with an
emphasis on navigation.

2.1. Genetic Programming

Research in the planning and control of mobile robots has

received much attention in the past two decades. We have
chosen genetic programming (GP) methods to develop our
robotic behaviors because this method has been
demonstrated to work for “proof of principle” problems. In
his book, Genetic Programming III, Koza (1999) documents
sixteen attributes that are needed for challenging a computer
to solve a problem without explicitly programming it. No
other methods come as close as GP, which currently
unconditionally possesses thirteen of the sixteen attributes.
GP starts with a high level statement of what needs to be
done, determines a basic sequence of how to do it, produces
a computer program, automatically determines the size of
the program, provides code reuse, provides parameterized
reuse, determines internal storage needs, determines
iterations, loops, and recursions, organizes into hierarchies,
automatically determines architecture, implements a wide
range of programming constraints, and operates in a well-
defined way.

We describe an approach where the GP at least partially
possesses the last three attributes: wide applicability,
scalability, and competitiveness with human-produced
results. The attributes are needed to produce the ultimate
goal of the system for automatically creating computer
programs to produce useful programs.

We extend the work of Pryor (1998) and Barnette et al.
(2000) who applied evolutionary methods to the
development of robotic behavior. Pryor (1998) originally
developed a genetic programming model to solve a suite of
high-level robotics problems. The motion of Pryor’s
“robugs” was idealized and highly constrained so that the
focus of his evolutionary model could be on high-level
navigational behaviors and goals. Low-level maneuvering
issue--such as locomotion, steering, and braking control--
were not initially addressed. Instead, the simulated robugs
were constrained to move on a discrete two-dimensional
square grid with instructions such as “turn” or “move
ahead”.

Behaviors were automatically generated using a genetic
program to solve a series of problems in which robots are
randomly distributed on a grid with obstacles and rewarded
for finding a source that is emitting a signal. The required
high-level navigational behavior can be encapsulated as a
computer program, which can be engineered by a variety of
methods. In the simplest case⎯when effective rules are
easy to conceive and implement⎯the behavior can be coded

by hand. For trivial goals, common sense is all that is
required for inventing rules. More difficult challenges
require more sophisticated solutions, which can be
generated by a variety of optimization methods including
thermodynamic analogy models, conventional guidance
theory, or reinforcement learning.

Pryor (1998), and Barnette et al. (2000) outline the details
of the implementation, and the specifics are not repeated
here. The representation allows a great deal of flexibility,
and can be adapted to many types of problems. The
behavior programs execute by traversing a tree that is made
up of building blocks called nodes, which can either be a
function or a terminal. Functions perform operations and
contain pointers to other nodes. Terminals return values
that result in an instruction to the robot. The trees
themselves are generated by a genetic programming model
originally developed by Pryor (1998) and based on methods
described by Koza (1992), within a general framework
presented by Holland (1975). Genetic programming is a
type of genetic algorithm, an evolutionary computing
method that is based on the principles of biological
evolution.

Artificial evolution takes place over many discrete steps
called generations. Generations in nature are not
synchronous because lifetimes and breeding times vary in
length, but evolution has been in operation for billions of
years on Earth. In the model they are synchronized for
simplicity, and the number of generations is limited by
practical considerations to hundreds. Each generation
consists of a population of individuals. In nature these are
organisms and the population size can vary and can reach
numbers of millions or billions. In the model they are
computer programs and the populations are held fixed for a
given problem, with typical sizes on the order of thousands.
The Darwinian principle of “survival of the fittest” is
applied. In nature, any individual that survives long enough
to breed and generate offspring is fit by definition. In the
model, each individual behavior program is assigned a
numeric score based on a “fitness function” chosen by the
researcher to represent the problem, and survival depends on
rank. Finally, the individuals must reproduce. In nature, the
genotype is carried by DNA, which is mixed between
individuals by sexual reproduction, and random processes
occasionally introduce mutations. The human genome
contains between 30,000 and 100,000 genes representing
many millions of base pairs. In the model, the “genotypes”
of two individuals are mixed with a crossover operator, and
random mutations are introduced to allow exploration of
other regions of the “fitness landscape” (see Koza (1992)
for more a more detailed descriptions of these concepts).
These artificial genomes have much lower information
content than DNA in nature, containing hundreds of genes
represented by thousands of bits of information.

 2

2.2. Autonomous Mobile Robots

An autonomous mobile robot in this work refers to
software construct situated in an environment in which it is
capable of self-directing freedom in pursuit of its goals.
(Wiess, 1999) An agent is embodied if it occupies a space
in an environment and affects the environment. Embodied
agents consists of a) sensors used to observe their worlds, b)
the cognitive component used to plan an action, and c)
actuators (or effectors) used to carry out the action.

In a deliberative, logic-based paradigm, mobile robot
control is divided into sense, plan, and act phases, with each
phase handled respectively (Gat, 1997). The cycle is
repeated at regular and very small time intervals throughout
the agent’s operational period. This paradigm works best for
well-defined, representable problems. Unfortunately, many
of the environments where embodied agents might be used
(certainly in most real world environments) demand that the
agents make decisions with alacrity due to the high rate of
environmental change. As environments become more and
more dynamic and complex, the problems become more
severe, eventually causing the agents based on a
sense/plan/act cycle to become impractical (Brooks, 1991).

In an effort to solve these very difficult problems facing
autonomous systems, the new approach given many names
by different researches, including the “animat” approach
(Wilson, 1985), task-oriented subsumption architecture
(Brooks, 1986), computational neuroethology (Cliff, 1991),
and behavior-based AI (Maes, 1993) has emerged. Rather
than explicitly planning, the reactive, behavior-based agents
would simply re-observe the world at every computational
step and act on what they perceive at that instant. The
agent’s decision-making function is assembled from a
number of simple behaviors that are triggered in response to
sensory input. The simple priority-based behavior
arbitration and lack of complex planning allow agents to
react quickly to situations that demand it. However, while
solving one problem by being adept at reacting to situations
and real-time decisions, several others--such as scalability,
inability to learn from past mistakes, and lack of cooperative
behaviors--were introduced.

 In Wooldridge & Jennings (1994) previous research in
these approaches, as well as very active research in hybrid
architectures, have been summarized. Their strengths are
complementary and combining the two approaches can
mitigate some of their weaknesses. In a layered, hybrid
approach, the agent’s subsystems are arranged in a hierarchy
with higher layers dealing with information at increasing
layers of abstraction.

We describe a hybrid approach that addresses the
challenge of achieving an optimal (or least acceptable)
balance between reactive and deliberative behaviors. It
differs from most existing hybrid architectures in two key
ways. First, it uses a combination of fidelity levels from
each approach. Second, it makes use of a vertical and

horizontal hierarchical structure to manage the interaction
between the layers.

2.3. Navigation

Map-learning and path-planning strategies are very active
research in the context of autonomous vehicles. Current
literature (Meyer & Filliat, 2003; Filliat & Meyer, 2003)
discusses numerous navigation strategies and outline the
adaptive capacities each afford to cope with complex,
dynamic environments. The algorithms insist on being
tightly coupled with the vehicle that is used.

As a benchmark for implementing and testing our various
concepts, we are using a grid-based UAV (or bird) problem
defined by Pryor & Barton (2002). The problem is similar
to the robug problem in that the bird is constrained to move
on a two dimensional Cartesian grid. It requires flight
behavior logic to search for uplift regions and investigate
the surrounding area without crashing. This problem is
more complicated than the robug problem because of the
different procedures that must be done sequentially. The
agent must search and map the uplift region before the
surrounding area can be explored, and conflicting goals of
exploration versus exploitation (of the lift zone) must be
balanced. This conflict was too difficult for a conventional
genetic program, and more advanced methods had to be
added.

A rectangular “lift zone” is generated with its short
dimension fixed at 20 units and its long dimension
randomly chosen from a range of between 85 and 105 units.
The long-axis is randomly oriented along the x, -x, y, or -y
axis of the Cartesian coordinate system. The rectangle is
placed such that the origin is 5 units from one end, and
centered on its width. This leaves between 80 and 100 units
extending on one of the four directions. A bird is placed
with its orientation chosen randomly from one of the four
directions at a random location within a 100100 × square
box centered on the origin, at an altitude of 20++ yx
units. When it is outside the lift zone, it loses one unit of
elevation for every time step. Inside the lift zone it gains
one unit, up to a maximum of 250. It moves one positive or
negative unit along either the x or y-axis, every time step. It
can go straight, turn left, or turn right (a modification to the
benchmark allows for U-turns). The fitness is defined by
the maximum distance away from the origin that a bird
reaches before returning to the lift zone. The actual fitness
is associated with the evolved behavior program, not with a
given instantiation of the bird, so the fitnesses of individual
birds running the same program--but with a range of
initializations—are averaged. If its altitude goes to zero, a
bird crashes and dies, and its contribution to the fitness
function is assigned a large negative value.

This would appear to be an extremely simple problem
compared to actual flight, but it involves staged and
somewhat contradictory goals that force a balance between

 3

exploration and exploitation. The conservative bird will
stay in the lift zone to preserve its life, but will get a low
score. The bold bird will fly away from the lift zone and
increase its risk of crashing. The highly ranked bird will
require a delicately tuned algorithm. The benchmark also
involves a set of goals that must be accomplished in
sequence: 1) the bird must find the lift zone, 2) the bird must
exploit the lift zone, 3) the bird must explore away from the
lift zone, and 4) the bird must return to the lift zone.

To tackle problems with this level of complexity, we are
now developing new methods of adaptive waypoint
following as a means of high-level guidance to vehicles
without regard to lower-level propulsion and physics or
middle-level autopilot algorithms, described in Section 6.

3. Evolution, Design, and Embodiment

Embodiment is the ability of a system to adapt to, learn
from, and develop with its environment. Embodiment
determines whether that system will “survive” in the
environment. More elaborate autonomous mobile robots
require increasing computational effort that often proves too
cumbersome and slow for real-world applications. The
term, graduated embodiment, is the notion of mobile robot
adapting to appropriate fidelity ranges. A physically
embodied agent must have:

• The ability to coordinate actuator and sensor
modalities to explore its environment,

• Goal-oriented behavior on micro and macro levels,
• Bi-directional interaction between the agent and its

environment,
• Bi-directional communication between the agent

and other agents in the environment, and
• An understanding of the physics of the

environment. (Duffy, 2001).

Biological evolution itself followed a path of graduated

embodiment. Building blocks for biochemical pathways
and structures developed during the billions of years before
life was fully embodied, when it consisted of single-celled
prokaryotes with limited sensory connections to a relatively
stable, uniform, and predictable environment. Most of
evolutionary history was spent developing the tools that
would later be combined and recombined while graduating
through higher levels of embodiment, from the first
multicellular animals (metazoa), through homo sapiens.

Animat research attempts to follow closely with the
thought that animals are created by biological evolution, not
by a designer. Animals thrive under real-world conditions
because their forms and behaviors are honed by billions of
years of natural selection. Our modern understanding of the
origin animal behavior has its roots in Darwin’s four basic
postulates:

• Variation exists among individuals in a population.
• Some of these variations are inherited by the next

generation.
• More offspring are produced in every generation

than are able to survive.
• Individuals with the most favorable variations are

the ones that survive and reproduce.

Consequently, survival and reproduction are not random.
Favorable variations are selected by nature. Forms and
behaviors that appear to have been designed are actually the
result of Darwinian evolution.

Evolutionary approaches to behavioral engineering are
biomimetic at deeper level, because they mimic the
adaptation that led to the structures and behaviors
themselves. Evolutionary methods are inherently suitable
for application to the graduated embodiment strategy, in
which high-level behavior algorithms that are initially
developed using evolutionary computing methods in a
relatively low-fidelity, disembodied modeling environment
can be migrated to useful applications.

Evolutionary computing is appropriate for behavior
engineering because it works with behavior building blocks
that can be re-used and re-combined, much in the same way
that biology operates. In biological systems, information is
encoded in DNA, the raw material on which evolution
operates. DNA holds the internal representation of an
organism, its genotype. The outward manifestation of an
animal, its phenotype, includes the reflexes, behavior, and
intelligence that allow it to survive and reproduce as an
embodied entity. “Internal” biomimetic behavior
engineering emulates life in this respect, and generates
behaviors that emerge by operating directly on the
genotype—in this case represented by computer code. It
depends on some degree of embodiment, and is a form of
“new AI”.

A drawback of artificial evolution is that it does not come
close to the fidelity of evolution in the natural world in
terms of numbers of generations, number of individuals in a
population, or information content of the genome.
However, the largest obstacle seems to be the fact that
evolutionary computing methods are simulations that model
“virtually embodied” entities, whereas natural evolution
operates in the real world on actual embodied individuals.
Unless the “off-line” simulation environment captures the
important characteristics of the real world, successful
behaviors may not survive when exposed to reality. In
biology, on the other hand, the fitness of individuals has
always been tested “on-line” under actual survival
conditions.

It is not a profound observation that virtual embodiment is
not the same as actual embodiment. The best argument for
the physical grounding hypotheses of new AI is summed up
by Brook’s (1990) remark that “…the world is its own best
model. It is always exactly up to date. It always contains
every detail there is to be known.” But to evolve robotic

 4

behaviors from scratch in the real world would be
impossible for lack of prokaryotic, self-replicating robots
and billions of years. This is an extreme restatement of the
fact that strong embodiment is not possible with current
technology (Sharkey & Ziemke, 2000). A realistic strategy
for artificial evolution is to skip the impossible steps and
graduate from virtual to physical embodiment through
increasing levels of fidelity.

Natural evolution’s embodiment graduated from simple to
complex organisms. Only during the most recent ticks of
the geologic clock did biological creatures possess the
directed mobility, good eyeballs, and large brains that
appear to be prerequisites for truly intelligent behavior (e.g.
Moravec, 1984). Technology already permits robots with
these physical attributes, but they seem to be insufficient
because of the lack of history in the software. Biological
evolution is a historical process that takes place in a world
where the future cannot be predicted. The DNA that
encodes animal behaviors contains information built up over
the entire span of geologic time. Successful behaviors are
the ones that contributed to survival and reproduction
throughout countless generations, during times when the
world may have been very different. The value of a
particular behavior depends on how closely the present
resembles the past. The ability of behavioral adaptations to
emerge in response to changes in the environment depends
upon rich and useful genetic variability, which results in
part from history.

In the natural world, evolution simultaneously operates on
an organism’s morphology and behavior; there is no
qualitative distinction between these two types of
adaptations. This is the approach taken by Sims (1994)
whose virtual animats involve co-evolution of both form
and function. This strategy greatly expands the solution
space that can be explored and allows the animat
morphology itself to be part of the optimization process.
Sims’ animats are, however still subject to limited degrees
of freedom and constraints that are not imposed in the
natural world. Moreover, the optimal solutions do not
necessarily yield physical systems that could lead to an
engineering design that would allow embodiment to be
realized in the real world.

Engineering considerations require that hardware and
software design be decoupled in order to achieve graduated
embodiment. The alternative would be to redesign new
hardware for every generation (with appropriate genetic
variability) to reach an optimum. A more realistic approach
is to develop building-block behaviors that can be applied
across a broad range of hardware designs. As the physical
robot design changes, a new behavior can be allowed to
evolve from the pre-evolved building blocks. This method
is a hybrid of engineered physical attributes and evolved
behaviors, but takes advantage of “history” information
embedded in the artificial genome that was accumulated
during lower levels of embodiment and fidelity.

Some practitioners of evolutionary computing adopt a
purist philosophy that “evolution should be allowed to
operate on its own and eventually it will find the best
solution.” This hands-off approach attempts to bypass any
human intervention whatsoever, presumably because human
biases might prevent global best--but unanticipated--
solutions from being discovered by machine. We reject this
approach. It is impossible to carry out for two reasons.
First is scalability; unlike the natural world, artificial
evolution does not have access to billions of years, the high
information density of DNA, nor the large populations of
individuals that can harbor a wide range of genetic
variability. Second is the fact that artificial evolution by
computer can never be free of human biases, because
evaluation functions used to rank the success of various
phenotypes are written by humans and already contain
biases.

Moreover, for robotics the hardware is also human
designed. The problem—by its very definition—is a hybrid
that contains both designed and evolved components. There
is already an interface between designed hardware and
evolved software, and this interface must include designed
software components--such as device drivers for sensors and
actuators--to function. The boundary between designed and
evolved components is arbitrary. For all these reasons, we
have adopted what we view as the most pragmatic approach
in which genetic programming methods are used to extend,
but not replace, the creativity and intelligence of the
designer. There is no such thing as cheating by hand-writing
useful functions, but ultimately it the “natural selection” that
decides when to use designed building blocks, and when to
use those that have been evolved from scratch. The result is
a hybrid of designed and evolved components at all levels of
organization.

4. Evolution with Building Blocks

The backbone of our research makes use of building
blocks in evolutionary modeling and simulation. For
engineered software, the concept of building blocks allows
various parts of code to be encapsulated according to
function. Software that is not built in this way degenerates
into “spaghetti code” that is fault-intolerant and difficult to
modify or improve. Likewise, if evolutionary methods are
used to generate programs to accomplish large and complex
sets of tasks, the resulting code is often inflexible and a
poorly optimized dead-end.

Building blocks can be combined either horizontally or in
a vertical hierarchy. The most effective strategy is to mix
evolved building blocks with engineered or hand-written
building blocks. For vertically integrated problems, some
aspects are easy to build by hand, whereas others are very
difficult or impossible when the model has many degrees of
freedom. Our effective strategy is to mix evolved building
blocks with hard engineered or hand-written building

 5

blocks. Our intent is to evolve functionality requiring
human and machine collaboration.

Rattlescape: A simple conceptual model can be used to
illustrate these ideas. Suppose, for example, we wanted to
design a behavior for a robotic rattlesnake whose only goal
is to survive in an environment where it might be stomped
by a large grazing animal. The human-designed snake
hardware would consist of sensors and actuators. We want
a snake that can sense, slither, and rattle like a real snake. A
greatly simplified snake animat might have a dozen sensors
and a hundred actuators. Evolution from scratch is
impossible for reasons of scalability.

We know from human experience that a buffalo will
avoid stepping on a buzzing rattlesnake, so we could write a
driver by hand that activates the tail vibration actuators in a
cycled sequence at a frequency that creates the appropriate
sound that will startle a buffalo.

Human observation also tells us that snakes exhibit
several different modes of locomotion, most of which
involve wavelike motion due to muscles contracting in a
cyclic sequence. Armed with this knowledge, we may wish
to reduce the number of degrees of freedom by considering,
for example, symmetric and anti-symmetric normal modes
as the building blocks of locomotion, and allow artificial
evolution to operate in a limited virtual world to select the
phases and amplitudes that yield the most efficient “slither”.

However, we might not know the best way to detect a
large mammal, other than to suspect that the task requires
some combination of vibration, heat, and visual motion
sensing. The large-mammal-detection algorithm might be
evolved from much smaller sensor data building blocks,
through a sequence of virtual worlds that model the
coupling of ground motion to vibration sensors, and heat to
infrared sensors.

We now have three algorithms with three different levels
of organization, and three different types of connections
between their designed and evolved components. If they
can be considered independent behaviors, another stage of
artificial evolution can be used to find a way to combine
them that leads to the best snake survival rates. An obvious
solution that would be quickly found by a genetic program
would be that shown in Figure 1: near animals would
activate the rattle behavior, and distant animals would
activate “slither”.

Now suppose the world changes. The buffalo are gone
and replaced by human beings who react to buzzing
rattlesnakes by killing them. The same building blocks can
be put together in a different way to generate a new survival
behavior. In the successful snake animats, the detection
algorithm now inhibits the vibration driver and perhaps
activates the slither driver for all detections.

For this illustration we have made an assumption that will
often fail in practice. We assumed that the three high-level
behaviors operate in complete isolation. It may turn out that
slither and rattle use common actuators and cannot be

simultaneously activated. Another possibility is that the
detection algorithm requires a stationary snake. Treatment
of the behaviors as independent building blocks greatly
reduces the number of degrees of freedom, but it may also
prevent the discovery of new survival adaptations and
higher-level optimization.

Our way of dealing with this is to apply staged
optimization, in which various high-level behaviors are
evolved independently as in the above example. A global
optimization is then performed by holding some behaviors
fixed and allowing others to co-evolve with the total system.
This might lead to a new emergent behavior, such as “rattle
and slither”, if that is a positive survival adaptation.

 Large Mammal?

Near Distant

Rattle Slither
Figure 1: A composite behavior tree is constructed of three
subtrees which can be hybrids of sub-subtrees that have both
designed (white) and evolved (gray) components at different
scales of organization.

5. Staged Optimization and Pruning

For the same problems, the behavior optimization process
is much more efficient when a complex task is broken into
smaller subtasks. For the benchmark problem described in
Section 2.3, the initial genetic flight control algorithms that
have been developed involve mere thousands of operations
and can be described by a “genome” of a few thousand
bytes. A simple doubling of the number of tasks that the
behavior must manage--or a similar increase in fidelity--
would put the problem out of reach on most compute
clusters. Building block efficiency seems to work best
when the various subtasks are independently optimized in
parallel by using a “policy table” which can be expressed as
a root node with a set of pointers to the various behavior
trees.

Many iterations of Pryor’s (1998) genetic programming
tool were implemented to tackle this problem, with varying
degrees of success. Versions of the code were written with
single trees, multiple trees, and various trees executed in
sequence. In some, a “ponder tree”, which was intended to
act as a higher processing layer, was inserted between the
sense level and the decision trees which output the action to

 6

be taken. In Figure 2, the relative success of various
methods can be seen as measured by the maximum fitness
value reached by various genetic programs, and the rate at
which it is reached. As it turned out, the existence of an
evolved ponder tree inhibited the rate of optimization.

We have developed generalized versions of Pryor’s GP,
with the added goals of 1) platform independence, 2)
modularity, and 3) integrated visualization tools. The data
structure of the tree that contains the flight control algorithm
consists of multiple arrays that keep track of state variables
(for flight simulation), calculated variables (for high-level
situational awareness and decisions), calculated integers (for
policy table flags), registers (genetically calculated values)
and pointers (for multiple decision trees that depend on
policy flags). Array dimensions are determined at compile
time, and depend on the evaluation function, the number of
degrees of freedom of the flight vehicle, and whether the
flight space is discrete or continuous. By generalizing the
genetic programming, behaviors for any environmental rules
can be developed with the same code, from the most basic
(4 degrees of freedom, discrete space, simple flight rules,
fixed lift zone) to the most advanced (6 degrees of freedom,
continuous space, full aerodynamics, turbulent boundary
layer). We used the most basic example as a benchmark
because it runs much faster than a simulation that must
solve realistic equations of motion at every time step.

The first version that demonstrated fast convergence and
approached the theoretical best solution for the benchmark
problem is the one that implemented a policy table. This
makes sense because of the sequential and competing goals
described earlier. It is because a bird in one situation, such
as needing to find the lift zone, needs to be running a very
different program than one in a situation where long-
distance exploration is paramount. For that reason, several
trees were evolved independently, and each were called

based on the a policy table value that represented its current
situation, such as 1) the bird has not discovered the lift zone,
2) the bird is inside the lift zone, 3) the bird has reached and
altitude of 250, or 4) time is running out. When such a
policy table was implemented, the ability of the code to find
good solutions increased markedly.

Staged optimization (Figure 3) led to even faster
improvement in evolved behaviors, but required more
human intervention. In the staged process, one or more sub-
behaviors can be locked, while the remainder are
independently optimized. This procedure greatly reduces
the parameter space to be searched by the program.
Combining staged optimization with sequential pruning of
the behavior trees led to the fastest improvement. In
sequentional pruning (Figure 4), the behavior code is
reduced in size by allowing the genetic program to remove
superfluous parts by applying a size penalty to the fitness
function. By locking all trees except the one to be pruned,
this process can be accelerated.

Platform independence is important for computationally
intensive genetic programming applications. This was
achieved by implementing a text-based (and in later
versions, an XML-based) description of the program trees in
place of the original binary representation. These text trees
are compact, with about a 10 Kbytes storage requirement
per behavior. Because the computation-to-communication
ratio can be extraordinarily high for this application, extra
bandwith, or even the latency of writing to disk, is not a
major problem.

The code was reorganized so that the evaluation routines
were broken into modules that could be called either from
the genetic programming tool or another (e.g. visualization)
program. By keeping the modules independent, the code
could be applied to other problems simply by inserting a
different evaluation function. In the most recent version, the

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Scaled time (node hours)

Fi
tn

es
s

2 trees, ponder tree, no policy table
5 trees, policy table, ponder tree
5 trees, policy table, no ponder tree
5 trees, policy, no ponder, staged, without pruning
5 trees, policy, no ponder, staged, with pruning

Figure 2: Benchmark problem performance on Sandia’s Cplant. The theoretical best fitness value is 215.
7

code has been converted to a fully object oriented
representation.

As a more complex test problem for evaluating our
implementation of building blocks, we merged our
benchmark lift zone problem with an image-searching
problem. We separately evolved a single-tree image zone
search behavior, and then combined it with our five-tree lift
zone algorithm to form a new, more complex six-tree
behavior. Because we are able to store series of trees as
ASCII text files, the merging of behaviors is a simple as file
concatenation (although files can also be kept separate). The
horizontal integration directly addresses the scalability of
GP programs.

We recognize that some complex real-world behaviors
will be much more difficult to break apart into smaller units,
and in other problems the subtasks are not independent and
must be optimized in consort. We think that by using

building blocks we can allow the behavior designer to make
the decision as to what constitutes a subtask, and to provide
flexibility as to which sets of subtasks are most effectively
co-evolved.

Figure 3: Staged optimization reduces search space. White
tree is a designed policy table, black trees are locked, and
gray trees are undergoing evolution.

6. Navigating with Adaptive Waypoints

Integrating behavior algorithms in a vertical hierarchy is

also required to create a comprehensive behavior system
that includes cognative, instinctual, and reflexive levels of
behavior in addition to physical model attributes. In one
example of vertical integration, we are implementing
adaptive waypoints (Figure 5) to provide a means of high-
level guidance to vehicles without regard to lower-level
propulsion and physics or middle-level autopilot algorithms.
Adaptive waypoints can be used to capture goal-oriented
and collective agent behaviors that can be transferred from
one type of vehicle to another as a self-contained behavioral
“building block”. Each individual vehicle is guided by its
own dynamic waypoint, which moves in such a way as to
lead the vehicle toward its individual or collective goal.

Waypoints are coordinates in a virtual world. An entity
can follow waypoints in the order they are given (e.g., read
coordinates from a file). Or, entities are often assigned to
perform certain tasks (e.g., loiter) once they reach a certain
location. Waypoints can be either user-generated or entity-
generated, and can be static, dynamic, or adaptive. A
waypoint can thought of as an internal representation, or
part of an agent’s cognitive map.

Waypoints can take on various attributes of longevity,
type-identification, and goal-orientation.

Longevity: Static waypoints are intended to be permanent
navigational aids and can be stored. Dynamic waypoints are
intended to mark locations that are of temporary tactical
importance (e.g., the last known location of an enemy).
While static waypoints remain in the entity memory queue
indefinitely, dynamic waypoints have a clearly defined
lifespan. After the lifespan is up or fade factor expires, the
dynamic waypoint expires and is no longer stored by the
entity. Adaptive waypoints can either be static or dynamic
but their longevity is determined reactively since it responds
in a timely fashion to changes in the environment. Adaptive

 8

Vehicle.XPOS
Vehicle.YPOS
Vehicle.DIR

Waypoint.XPOS
Waypoint.YPOS

FDM

AW

Figure 5: Adaptive Waypoint (AW) and Flight Dynamics
Model (FDM).

Figure 4: Pruning of trees removes useless code.

waypoints are determined by continuously running
processes.

Type identification: All types of waypoints can be tagged
with types to identify what kind of behavioral information
they represent or any other information in addition to
position. Static and dynamic waypoints have fixed type
identification. Adaptive waypoints are autonomous since
they exercise control over their own actions and can take on
a new identities when needed. Identity can be learned and
changed based on previous experiences.

Goal-orientation: Often, waypoints are used to solve
situational goals. Static waypoints have no goal-orientation.
Dynamic contain information that may aid others in
obtaining a goal. Adaptive waypoints do not simply act in
response to the environment but are goal-oriented and can
communicate with other agents to determine a goal.

The intelligence of the waypoint can be transferred from
one type of vehicle to another as a self-contained behavioral
“building block.” Each individual vehicle is guided by its
own adaptive waypoint, which moves in such a way as to
lead the vehicle toward its individual or collective goal. The
intelligence of a vehicle can be contained entirely within the
adaptive waypoint that is aware of and can respond to the
state of the vehicle, the vehicle’s environment, it’s high-
level goal, and (in the case of collective behavior) the state
of neighboring vehicles.

At every time step, the vehicle position is updated based
on the position of its waypoint, on its state, on its dynamics
model, and on the autopilot system whose goal is to take it
to the waypoint. The waypoint coordinates are updated
based on its behavior algorithm in combination with the
location and direction of the vehicle, but not on the details
of the internal state of the vehicle.

Adaptive waypoint behavior algorithms can be developed
using the methods of genetic programming and graduated
embodiment by staged optimization (Figure 6). The
advantage of graduated embodiment is that behaviors can be
evolved in the absence of a high-fidelity vehicle model,
reducing the computational cost. Basic waypoint behaviors

can be developed using low-fidelity vehicle models that
only approximately reflect the actual vehicle performance.
Once a waypoint behavior is developed for the low-fidelity
vehicle model, the behavior can be tuned through successive
stages of higher fidelity, until the highest fidelity model is
achieved. This is the essence of graduated embodiment.

Example problem: We can illustrate these concepts with

a stripped-down problem that shows that a simple adaptive
waypoint that can be graduated from a one-dimensional
agent to a vehicle that moves in two-dimensions. Suppose
we have a vehicle (V), a target (T), a fixed waypoint (FW)
an adaptive waypoint (AW), and a home (H). Let the initial
position of V=0 and FW=100. T is a random number
between 1 and 200, and H=0. The position of AW at every
time step is entirely determined by the GP.

For the simple world, the rules of motion allow V to take
one step in the direction of AW every time step. The rules
of detection are that V detects T when they have the same
coordinate. To be successful, V has to locate any target
between 1 and 100, and return to H. The evaluation
function is such that the most fit behavior is the one that
completes the goal in the shortest time, averaged over some
number of tests.

The behavior can easily be coded by hand, but our GP
discovered it within the first few iterations: The AW is set
at infinity until the vehicle reaches either T or FW, and then
AW is set to negative infinity. When the vehicle is allowed
to explore in a two-dimensional plane, with a constraint on
its turning radius, but otherwise following the same rules of
motion, the adaptive waypoint no longer works because the
vehicle does not return home (because of the offset due to
its turning radius). A single mutation from the first solution
will, however, solve the problem. The final AW location
evolves from negative infinity to zero.

The point of this illustration is that in going from the
simple to the more complex, many parts of the problem may
already be solved and those behaviors can be incrementally
evolved in a way that allows building blocks and
information to be re-used.

 Co - evolutionary
Fine TuningHi - Fidelity Co - evolutionary
Fine TuningLow - Fidelity

Toy flight
model

Low - Fidelity Mid - Fidelity Mid - Fidelity

FDM
Autopilot

Hi - Fidelity Hi - Fidelity

Autopilot
Atmosphere

6-DOF

Figure 6: Graduated embodiment of adaptive waypoint takes
behavior through stages of evolution.

7. Conclusions

We have introduced a hybrid AI approach that has many

advantages for generating autonomous mobile robot
behaviors that operate in a complex, dynamic environment.
This method is needed to generalize across different
conditions because of the diversity of physical
environments, vehicles, locomotion abilities, and interaction
dynamics with other objects, We believe navigation
strategies, such as, “search-for-target”, “move-to-goal”, and
“avoid-collision”, are reusable using the method of adaptive
waypoints, provided they are adjusted to suit the physical
capabilities of each vehicle using graduated embodiment.

 9

8. Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-
94AL85000. This project was funded by the Laboratory
Directed Research and Development (LDRD) program.

References

Barnett, D.W., Pryor, R.J. and Feddema, J.T. (2000).

Development and application of genetic algorithms for
Sandia’s RATLER robotic vehicles. SAND2000-2846,
Sandia National Laboratories.

Boslough, M.B.E. (2002). Autonomous dynamic soaring

platform for distributed mobile sensor arrays.
SAND2002-1896, Sandia National Laboratories.

Brooks, R. A. (1986). A robust layered control system for a

mobile robot. IEEE Journal of Robotics and Automation,
RA-2(1):14-23, 1986.

Brooks, R.A. (1990). Elephants Don’t Play Chess. Robotics

and Autonomous Systems 6. 3-15.

Brooks, R.A. (1991). Intelligence without reason.

Proceedings of the 1991 Int. Joint Conference on
Artificial Intelligence. 569-595.

Cliff, D. (1991) Computational neuroethology: A

provisional manifesto. From Animals to Animats:
Proceedings of the First International Conference on
Simulation of Adaptive Behavior. 29-39. MIT Press.

Duffy, B.R., Joue, G. (2001). Embodied Mobile Robots. 1st

International Conference on Autonomous Minirobots for
Research and Edutainment - AMiRE2001.

Ferguson, I. A. (1992). Towards an architecture for

adaptive, rational, mobile agents Decentralized AI 3 -
Proceedings of the Third European Workshop on
Modeling Autonomous Agents and Multi-Agent Worlds
(MAAMAW-91), 249-262. Elsevier Science Publishers.

Gat, E. (1997). On three-layer architectures. Artificial

Intelligence and Mobil Robots. AAAI Press.

Holland, J.H. (1975). Adaptation in natural and artificial

systems. Univ. of Michigan Press, Ann Arbor.

Koza, J.R. (1992). Genetic Programming. MIT Press.

Koza, J., Bennet, F., Andre, D., and Keane, M. (1999)
Genetic Programming III: Darwinian Invention and
Problem Solving, Morgan Kaufmann.

Maes, P. (1993). Behavior-based artificial intelligence.

From Animals to Animats: Proceedings of the Second
International Conference on Simulation of Adaptive
Behavior. MIT Press.

Filliat, D. and Meyer J. (2003). Map-based navigation in

mobile robots. I. A review of localization strategies,
Journal of Cognitive Systems Research. (in press).

Meyer, J., and Filliat, D. (2003). Map-based navigation in

mobile robots. II. A review of map-learning and path-
planning strategies. Journal of Cognitive Systems
Research. (in press).

Moravec, H.P. (1984). Locomotion, vision, and intelligence.

Robotics Research 1. 215-224. MIT Press.

Pryor, R.J. (1998). Developing robotic behavior using a

genetic programming model. SAND98-0072, Sandia
National Laboratories.

Pryor, R.J. & Barton, (2002). Developing maneuvering

behaviors for a glider UAV using a genetic programming
model. SAND2002-3147, Sandia National Laboratories.

Sharkey, N. and Ziemke, T. (2000). Life, mind and robots;

the ins and outs of embodied cognition. Hybrid Neural
Systems. Heidelberg: Springer Verlag.

Sims, K. (1994). Evolving 3D morphology and behavior by

competition. Artificial Live IV. Proceedings, MIT Press.

Weiss, G. (1999). Multiagent Systems. MIT Press.

Wilson, S. W. (1985). Knowledge growth in an artificial

animal. Proceedings of the First International Conference
on Genetic Algorithms and their Applications. Lawrence
Erlbaum Associates.

Wooldridge, M. and Jennings, N. (1994). Intelligent Agents:

Theory and Practice. Knowledge Engineering Review.

 10

	Abstract
	References

